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Abstract—We consider in this paper the dynamic electromechanical responses of linear piezoelectric materials
with hexagonal symmetry in the normal mode configuration. In particular, we formulate the coupled transient
problem and obtain numerical results to illustrate the nature of the electrical outputs of rectangular specimens
of these materials subjected to time dependent mechanical boundary loads.

1. INTRODUCTION

In this paper we consider the dynamic coupled electromechanical responses of linear piezoelec-
tric materials which have the symmetry of a hexagonal crystal in class Cs,. Such a material has
five independent elastic constants, three independent piezoelectric constants, and two in-
dependent dielectric constants. Hence rather complex coupling phenomena may occur depend-
ing on the conditions of the problem and the nature of the external electrical circuit. Here, we
consider a particular problem which is consistent with the conditions of the normal or
transverse mode experiment[1], and the boundary-initial conditions are such that the mechani-
cal problem is one dimensional. As we shall see, our results illustrate clearly the nature of the
electromechanical interaction occurring in the normal mode experiment.

Our motivation for this study is that polarized ferroelectric ceramics effectively have the
symmetry of a hexagonal crystal. In addition to being piezoelectric, ferroelectric ceramics also
exhibit rate dependent effects when depolarization occurs under the action of high stress
loadings. Hence the constitutive relations which we adopt do not adequately describe their
responses in the latter situation, but we feel that our results do give excellent qualitative insight
regarding the solution of the problem when rate dependent effects are included. Further, a
special case of our results holds for the situation when a ferroelectric ceramic undergoes
complete depolarization immediately behind the shock front.

2. BASIC EQUATIONS
The constitutive relations of a linear piezoelectric material are, in general,

T; = €5Su — eiEx,
.1
D= em‘S)k + GﬁE},

where T}; is the stress, S; the strain, E; the electric field, and D; the electrical displacement. The
strain is defined by the relation

Sij = é(llu + u;'i) (2.2)
with u; being the mechanical displacement. In (2.1) €5 is the elastic constant, e; the
piezoelectric constant, and ¢jj the permittivity. The appropriate field equations are balance of
linear momentum

Ty = pids, 23)

where p is the reference mass density, and Gauss’ law

D,",' =0, (24)
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Clearly, the field equations (2.3) and (2.4) and the constitutive relations (2.1) with the strain-
displacement relations (2.2) yield a system of equations for the determination of the mechanical
displacement i, and the electric field E; which is given by the gradient of the electric potential ¢
in that it obeys the relation

curtl E=0. 2.5)
For a hexagonal crystal, the constitutive relations (2.1) with (2.2) reduces to{2]

£ £

Tu = €futrs + €hinitaz + €insus3— &3, Es,
£ B

T = €fintrs + €fliza + €linkss — ey Es,

Tis = €linsitry + €finastza + €hssits s — €333 B3,
2.6
Tiz= Ty = X €h — €Fiza) (12 + u2),

Ty = Ty = €Bn(Ua3 + U32) — e13E,,
Tiz= Ty = €Bn(irs +43,y) — esEy,

and

Dy = eys(uy 3+ s ) + €} Ey,
Dy = e3(iz3 + U3 ) + €1 By, @279

s
D3 = eanlty i + €311l22 + 333033 + €3Es.

Formulae (2.6) and (2.7) indicate that a hexagonal crystal has 5 elastic constants, 3 piezoelectric
constants and 2 dielectric constants. A poled ferroelectric ceramic with x, being the poling
direction effectively has the symmetry of a hexagonal crystal. However, poled ferroelectric
ceramics also exhibit rate dependent effects when depolarization occurs under the action of
high stress loadings so that in this situation (2.6) and (2.7) do not fully describe their
responses[3]. In any case we shall consider in the sequel the consequences of (2.6) and (2.7)
within the context of the normal or transverse mode experiment. We believe that our resuits
will give excellent qualitative insight with regard to the problem when the rate dependent
effects are included.

3. THE NORMAL MODE EXPERIMENT AND THE GOVERNING EQUATIONS

Let us first consider the conditions of the normal or transverse mode experiment whose
geometrical configuration is illustrated graphically in Fig. 1. In this experiment conducting
electrodes are deposited on the x, faces of a polarized ferroelectric ceramic bar with rec-
tangular cross section. The electrodes are connected via a resistor, inductor and/or capacitor.
Time dependent loads are then applied at the x, =0 face. During the course of the experiment

{00, h3) Electrode

e
(0, hz, 0

!
" 1,00 Electrode

Fig. 1. Geometry of the problem.
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the voltage drop across the external circuit element is recorded. This voltage drop is a
manifestation of the electromechanical interaction occurring in the ceramic.
In order to capture the principle features of the problem and to simplify matters, we assume
that .
uy = uy(0, x2, X3, ty = uy(hy, X3, X3, ) = 0,
@a3.1n

U= u3(xlv X2, 0’ t) = uS(xlv X2, h31 t) =0.

The constraints (3.1) necessarily imply that the motion is one dimensional and the only nonzero
component of the mechanical displacement is u, such that

Uz = Us(xy, X2, X3, 1)
3.2)
= u2(x29 t)

for all (xy,x3). In view of (3.2); we see that the constitutive relations (2.6) of the stress
components become
Th= ‘gﬁzzllz,z‘ eanEs,

— @E
Ty = Crinlta2— €3 Es,

Ty = €Fissuzz — €333 Es,
(3.3)
Ty =Tx=0,

Ty =Tyn= —enkE,,
Ty =Ty = —eank,

and the constitutive relations (2.7) of the electrical displacement components reduces to

Di=¢ 1le|,
DZ = EileZ’ (3'4)

— S
Dy = e 22+ €nEs.

The symmetry of the problem also dictates that the electric field E; can depend at most on
(x,, 1) independent of (xy, x3). Now, Gauss’ law (2.4) with (3.2); and (3.4) implies that E; is
independent of x,; and, since (x,, x»,0) and (x,, x;, hs) are equipotential surfaces, E; is also
independent of x, and is given by

E; = Ey(1). (3.5)

We are now in the position to derive the governing equations of the coupled dynamic
problem. It follows directly from (2.3), (3.2), (3.3) and (3.5) that

3*u .
‘gﬁn:,;ziz=9uz- (3.6)

Formula (3.6) is, of course, the usual wave equation. However, its solution need not be
straightforward because its boundary conditions depend, in general, on E; (consider, for
instance, the condition T» =0 at x,= h,). This necessitates the derivation of the governing
equation of E;. As we shall see, this equation depends, in particulat, on the nature of the
external circuit.

To begin with, let us refer to the Gaussian element as illustrated in Fig. 2, and consider the
global form of Gauss’ law, viz.,

Q=¢ D-nda, 3.7
A
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Fig. 2. Projection of the Gaussian surface on the x,, x;-plane.

where Q is the total free charge within the closed surface A with outward unit normal a. It
follows directly from (3.7) that for the Gaussian element of interest, we have

Q=- J:' J; " Dydx, dxy (3.8)

Here Q is the total free charge of the electrode. The current i in the external circuit is, of
course, given by

i=—-== (3.9
Hence, formula (3.8) with (3.2),, (3.4)s, (3.5) and (3.9) yields
dE, d (=
h|hz¢§3‘a';2‘ i=—-hen ar J; Uz dx,. (3.10)

Resistive external circuit
When the external circuit consists of a resistor with resistance R, the voltage drop ¥ across it is
given by

¥Y=iR.
But this voltage drop is equal to the voltage drop across the electrodes. Hence, we have
iR = ~mE,. 3.1D

Substituting (3.11) into (3.10) yields the equation

h d (*
hlhziigsgft}' + 'RZ Ey= — ke, i L k22 dx; 3.12)

for the determination of E;. Notice that this equation depends on the nature of the mechanical
disturbance; hence simultaneous solution of (3.6) and (3.12) is necessary.

Inductive external circuit
For the case when the external circuit is an inductor with inductance L, we have

di
V- La;y
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and
Lp-' - s E; (3.13)
ar - b )
Formulae (3.10) and (3.13) yield
&*E; h &~
h;th;‘é“&;{s"' IjEs =~ hilyy FL U2z dx,. 3.14)

Capacitative external circuit
For a capacitative external circuit with capacitance C, we have

1 t
=EI i(r)dr,
0

and

t
%I i(r)dr = — hyE;. (3.15)
0
In this instance, E; is given by the simple formula

- hyey, I
E, h Tes+ by C Uandx,. (3.16)

It is clear from the preceding analyses that we may also derive the governing equation of E;
for more complex circuits. In these instances we first derive via Kirchoff's law the circuit
equation for the current / in terms of E,, and the solution of the problem entails the
simultaneous solution of (3.6), (3.10) and the circuit equation. Since the procedure is quite
apparent, we will not dwell on this matter. Instead, we shall consider, among other things,
certain interesting implications of (3.12) in the next section.

4. MOTION CONTAINING A SHOCK
We now assume that the motion (3.2), contains a shock moving with velocity

dy

ar @4.n

Uy =

where x, = y(t) gives the position of the shock at time ¢. Across the shock u, is continuous, but
[] %0, [urs]#0, @.2)
where [-] denotes the jump, i.e. [f]=f"—f" with f*= n—-ﬁ%f fxa 1),
Since the electric field is lamellar, it follows immediately that [4, Sec. 175]
[Ei)=[Es]=0, [Ej]#0. 4.3)
On the other hand, the electrical displacement is a solencidal field, and we have [4, Sec. 175}
[Di)=0, [Dj]#0, [Di]*0. 4.9
In view of (4.3) and (4.4), we see that (3.4),, imply
=Dy=0,
=E,=0,

{4.5)
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otherwise we would have a contradiction. Also, (3.4);, (4.3) and (4.4) yield
[DJJ = e:u[uz.zl, (4.6)

which gives the jump in D; in terms of the jump in strain.
We now examine the implications of (3.12) when the motion contains a shock. It follows
immediately from (3.12) that

y(t) ) hy 3
hyhaes) dE’+ﬁEs = = hiesnla[lia2] ~ hnesnL U2 dxy— hiesy I( );“udxz- (CN))
y¢

B4t R at

If the material is initially at rest in a homogeneous configuration and if the strain loading
corresponds to a step function S so that

(2] = uz2 =S, @4.8)
then (4.7) has the reduced form
dE; h
h|h2€3s3 —d“t'é+—R2 E3 = - h.emu,.S (4.9)

for times less than wave front transit time. Formula (4.9) together with the initial condition
E;(0) = 0 may be readily integrated, and we have the solution

Rhjesy ity
3

h3
Ey(5)= - it s{l —exp (— m:)} (4.10)
Formula (4.10) indicates that |Ex(t)] increases monotonically with time to the steady value

| Exe)| = lg"—!-;—;ﬂ'—"sl : @.11)

and which depends, in particular, on the magnitude of the strain. Notice also that the rate of
increase of Ej(t) depends on the RC time constant of the circuit with h,hsesh/h; being the
capacitance of the specimen and which depends on its geometry.

It suffices to point out at this juncture that in the linear context an equation analogous to
(4.9) is also valid in the limiting case when a polarized ceramic undergoes complete rapid
depolarization immediately behind the shock regardless of the nature of the wave structure. In
this situation €3} is the equilibrium value, e;,, is the instantaneous value and the strain S is
identified as the shock strength aad it may depend on time if the shock evoives as it propagates.
Further, for times greater than the wave front transit time, we have the homogeneous equation

dE; hy
s 9E; Ay
»g TR

so that the magnitude of the electric field decays exponentially from its value at transit time.

hihae Ey=0, 4.12)

5. EXAMPLES WITH RESISTIVE EXTERNAL CIRCUIT

It would be interesting to consider certain solutions of the coupled problem for the case of a
resistive external circuit and to illustrate, in particular, the influences of the boundary condition
at x, = h, and the resistive load on the electrical response.

The material which we use in our sample problem is a ferroelectric ceramic called PZT SH,
and the appropriate properties relevant to our present considerations are (5]

%5in = 12.6 x 10" dyne/cm?,
e = —6.5x% 107 coul/cm?,
€= 1.3x 107" farad/cm,

p=17.5gm/cm’;
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The geometrical dimensions of the specimen are taken to be
h,=0318cm, hy=222cm, hi=0953cm,
and the resistances of the external circuit are

R = 10,000 ohm,
R = 50,000 ohm,

The coupled problem, namely (3.6) and (3.12), together with the initial conditions
Ux2,0)=0, Uxx2,0)=0, E;{0)=0

are solved numerically using a modification of the computer code WONDY IV for the following
three cases[6):

Q)
Tx(0, 1) = 6.3 X 10° dyne/cm?,
TZZ("Z’ t) = 0;
(ii)
_ [4.67x10°tdynefem®, <135 usec,
20, 1) = {6.3 x 10°dyne/em?,  t>1.35 usec,
Tn(hla t) = 0;
(iti)

4.67x 10°tdyne/cm?®, t<1.35 usec,

Tx(0,0)= { 6.3x 10’ dyne/cm?, 1> 1.35 usec,

#y(hy, 1)=0.

In Fig. 3 we illustrative graphically the current, i.e. i = ~ h;E3/R, of cases (i) and (ii) for 3
wave front transit times. Note that the gradual initial rise of the current is due not only to the
nature of the boundary condition at x, =0 but also the RC time constant of the circuit. Also,
the current begins to drop at approximately the first wave front transit time. This is a direct
result of the stress free boundary condition at x, = h,. It is also of interest to point out that
because of electromechanical coupling and the stress free boundary condition a wave also

R+10kQ

0.4

Current, amp
o
=

0.4

0.0 4.0 8.0 12.0
Time, usec

Fig. 3. Output current versus time for R = 10,000 ohm. Solid line refers to case (i), and dashed line refers to
case (i) (see text).
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Current, amp

0.0 4.0 3.0 12.0
Time, usec

Fig. 4. Output current versus time for R = 10,000 ohm and R = 50,000 ohm for case (i) (see text).

0.4
R« 50 kQ - S

amp

Current,

0.2 | | 1 | | | ]
0.0 4.0 30 12.0
Time, usec
Fig. 5. Output current versus time for R = 50,000 phen. Solid line refers to case (i) and dashed line refors to
case (ili) (see toxt).

originates at x, = h,. Indeed, it follows from (3.3), that
Uz oo, ) = ’“ & B

In Fig. 4 we illustrate the influence of the external resistive load on the current for case (i).
Clearly, these results show the influence of the RC time constant of the circuit on the nature of
the electrical response.

In Fig. 5 we illustrate the corresponding results of cases (ii) and (iii). Note that in case (iif)
the current continues to rise even after the first wave front transit time, and is quite different
from that of case (ii). This is because of the fact that the boundary at x, = h, is held fixed. At
approximately twice the wave front transit time the current begins to decrease.

The results which we have presented here are indicative of the complicated nature of
electromechanical interactions, and the boundary conditions are of utmost importance in these
considerations. Unfortunately, there are no definitive experimental results available for com-
parison with our predictions at this time.
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