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AIJID'act-We consider in this paper the dynamic electromechanical responses of linear piezoelectric materials
with hexagonal symmetrY in the normal mode confilUl'ation. In particular, we formulate the coupled transient
problem and obtain numerical results to illustrate the nature of the electrical outputs of rectansuJar specimens
of these materials subjected to time dependent mechanical boundary loads.

I. INTRODUCTION

In this paper we consider the dynamic coupled electromechanical responses of linear piezoelec
tric materials which have the symmetry of a hexagonal crystal in class C6~' Such a material has
five independent elastic constants, three independent piezoelectric constants, and two in
dependent dielectric constants. Hence rather complex coupling phenomena may occur depend
ing on the conditions of the problem and the nature of the external electrical circuit. Here, we
consider a particular problem which is consistent with the conditions of the normal or
transverse mode experiment[l), and the boundary-initial conditions are such that the mechani
cal problem is one dimensional. As we shall see, our results illustrate clearly the nature of the
electromechanical interaction occurring in the normal mode experiment.

Our motivation for this study is that polarized ferroelectric ceramics effectively have the
symmetry of a hexagonal crystal. In addition to being piezoelectric, ferroelectric ceramics also
exhibit rate dependent effects when depolarization occurs under the action of hiIb stress
loadings. Hence the constitutive relations which we adopt do not adequately describe their
responses in the latter situation, but we feel that our results do give excellent qualitative insiabt
regarding the solution of the problem when rate dependent effects are included. Further, a
special case of our results holds for the situation when a ferroelectric ceramic undergoes
complete depolarization immediately behind the shock front.

2. BASIC EQUATIONS

The constitutive relations of a linear piezoelectric material are, in general,

(2.1)

where Tlj is the stress, 5;j the strain, E; the electric field, and D1 the electrical displacement. The
strain is defined by the relation

(2.2)

with Ui being the mechanical displacement. In (2.1) ~lft; is the elastic constant, tlJt the
piezoelectric constant, and EC the permittivity. The appropriate field equations are balance of
linear momentum

where p is the reference mass density, and Gauss.' law

D~i=O.
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(2.3)

(2.4)
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Clearly, the field equations (2.3) and (2.4) and the constitutive relations (2.1) with the strain
displacement relations (2.2) yield a system of equations for the determination of the mecbanical
displacement '" and the electric field Et which is liven by the aradient of the electric potential tp

in that it obeys the relation

curIE=O.

For a bexaaonal crystal, the COIlStitutive relations (2.1) with (2.2) reduces to[2]

Til = «~II"t.l +«~22"U+«~»"3,3 - t311E3'

Trz = «~rz"I.1 +«~1I"U+«fi»"3,3 - e31IE3,

T33 .. «fi33"t.t + «ft»"u+ «~3113,3 - ernE3'

Ttz =T:21 = !<«ft11 - «fizz) (II J.2+ "2,1),

T23 =T32 =«h(flu +"3,z) - ell3Ez,

T13 .. T3I = fib(" 1.3+.113,1) - t ll3E..

and

DI .. ell3("l.3+ 113.1) +,fiE..
~ .. tll3(IIU+113,z) +,flEz,

~ .. e311"t.1 + e31l"u + t»3"U +f~3'

(2.5)

(2.6)

(2.7)

Formulae (2.6) aad (2.7) iDdicate that a hexaaoual crystal has 5 elastic conataDts, 3~
conatants aDd 2 dielectric constants. A poled ferroelectric ceruaic with X3 bema the poq
directioIl electively bas the symmetry of a heuaonal crystal. However, poJed. ferroelectric
cerudca also exhibit rate dependent elects when depolarization occurs UDder the action of
biah stress JoMiap so that in this situation (2.6) and (2.7) do not fully describe their
reapoIIICS (3). In ally case we shall CODIider in the sequel the coaaeq1leDCeS of (2.6) aad (2.7)
within the context of the normal or transverse mode experiment. We believe that our results
will live exceUent qualitative in.t with reprd to the problem when the rate dependent
effects are included.

3. THE NORMAL MODE EXPERIMENT AND THE GOVERNING EQUATIONS

Let us first consider the conditions of the normal or transverse mode experiment whose
pometrica1 con8auration is illustrated graphically in Fig. 1. In this experiment condueti.na
electrodes are deposited on the X3 faces of a polarized ferroelectric ceramic bar with rec
tangular cross section. The electrodes are connected via a resistor, inductor and/or capacitor.
Time dependent loads are then applied at the X2'" 0 face. Durina the course of the experiment

Electrode

Fig. 1. Geometry of the problem.
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the voltage drop across the external circuit element is recorded. This voltage drop is a
manifestation of the electromechanical interaction occurring in the ceramic.

In order to capture the principle features of the problem and to simplify matters, we assume
that

(3.1)

The constraints (3.1) necessarily imply that the motion is one dimensional and the only nonzero
component of the mechanical displacement is U2 such that

(3.2)

= U2(X2, t)

for all (x" X3). In view of (3.2h we see that the constitutive relations (2.6) of the stress
components become

Tn = ~ft22U2,2 - e 3nE3,

T22 =C€ftnU2,2 - e 3nE3,

T33 =~ft33U2,2 - emE3'
(3.3)

T I2 =T21 =0,

Tn =T32 = - e113E2,

TI3 =T31 = - ell3E..

and the constitutive relations (2.7) of the electrical displacement components reduces to

DI=EfIEI.

~=EfIE2'

~=e3nU2,2 + Ef3E3.

(3.4)

The symmetry of the problem also dictates that the electric field E1 can depend at most on
(X2' t) independent of (XI. X3). Now, Gauss' law (2.4) with (3.2l2 and (3.4) implies that E2 is
independent of X2; and, since (x.. X2, 0) and (XI. X2' h3) are equipotential surfaces, E3 is also
independent of X2 and is given by

(3.5)

We are now in the position to derive the governing equations of the coupled dynamic
problem. It follows directly from (2.3), (3.2), (3.3) and (3.5) that

(3.6)

Formula (3.6) is, of course, the usual wave equation. However, its solution need not be
straightforward because its boundary conditions depend, in general, on E3 (consider, for
instance, the condition T22 =0 at X2 =h2). This necessitates the derivation of the governing
equation of E3• As we shall see, this equation depends, in particular, on the nature of the
external circuit.

To begin with, let us refer to the Gaussian element as illustrated in Fig. 2, and consider the
global form of Gauss' law, viz.,

Q={ D'adA, (3.7-)
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FJI. 2. Projection of the Gaussian surface on the Xl' XJ-plane.

where Q is the total free charac widIiD the closed surface A with outward unit normal It. It
follows ctirec:t1y from (3.7) that for the Gaussian element of interest, we have

(3.8)

Here Q is the total free charge of the electrode. The current i in the external circuit is, of
course, liven by

. dQ
1= -Cit. (3.9)

Hence, formula (3.8) with (3.2}z, (3.4h. (3.S) and (3.9) yields

(3.10)

RuiltiH em,.1 circuit
When.the ex....circuit consists of a resistor with resistance R, the vo'"drop 'Y across it is

liven by

'Y= iR.

But this voItaae drop is equal to the voltage drop across the electrodes. Hence, we have

(3.11)

Substituting (3.11) into (3.10) yields the equation

(3.12)

for the determination of E). Notice that this equation depends on the nature of the mechanical
disturbance; hence simultaneous solution of (3.6) and (3.12) is necessary.

Inductive extemal eireuit
For the case when the external circuit is an inductor with inductance L, we have

di
'Y= L dt'
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and

(3.13)

Formulae (3.10) and (3.13) yield

(3.14)

Capacitative extemal Circllit
For a capacitative external circuit with capacitance C, we have

1 i''Y=C 0 i('l")d'l",

and

(3.15)

In this instance, E3 is given by the simple formula

(3.16)

It is clear from the preceding analyses that we may also derive the ,overning equation of E3

for more complex circuits. In these instances we first derive via Kirchott's law the circuit
equation for the current i in terms of E], and the solution of the problem entails the
simultaneous solution of (3.6), (3.10) and the circuit equation. Since the procedure is quite
apparent, we will not dwell on this matter. Instead, we shaD consider, among other things,
certain interesting implications of (3.12) in the next section.

4. MOTION CONTAINING A SHOCK

We DOW assume that the motion (3.2h contains a shock moving with velocity

dy
u,. =dt' (4.1)

wbere X2 =Yet) gives the position of the shock at time t. Across the shock 112 is continuous, but

(4.2)

where [.] denotes the jump, i.e. [f] =r-r with r = lim l(x2' t).
•• • • ~7<')~

Since the electric field is lamellar, it fonows immediately that [4, Sec. 175]

(4.3)

On the other hand, the electrical displacement is a solenoidal field, and we have [4, Sec. 175]

(4.4)

In view of (4.3) and (4.4), we see that (3.4k2 imply

(4.5)
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otherwise we would have a contradiction. Also. (3.4h. (4.3) and (4.4) yield

(4.6)

(4.7)

which gives the jump in ~ in terms of the jump in strain.
We now examine the implications of (3.12) when the motion contains a shock. It follows

immediately from (3.12) that

dE h 1'(/) IJ i'" IJh1h2«f3-dJ+ R3E3=- hl'3I1".[uul - hl'3I1 -8"2,2 dxt- hl'3I1 -8"1.2 dxt.t •• 0 t 1(/) t

If the material is initially at rest in a homoaeneous coquration and if the strain loading
corresponds to a step function S so that

then (4.7) has the reduced form
!"u! ="2.2 =S. (4.8)

(4.9)

for times less than wave front transit time. Formula (4.9) toaetber with the initial condition
E,(O) - 0 may be readily intepatld, and we have the solution

(4.10)

(4.11)

(4.12)

Fonauia (4.10) iadicatea that IB,(t~ incRues DlOROtonic:aIly with time to the steady value

IE,(IXI~ -I Rh
I
::

Il
". Sl '

and which depends, in particular. on the mapitude of the strain. Notice also that the rate of
increase of E3(t) depends on the RC time constant of the circuit with h1h2«fJh3 beina the
capacitance of the spec.... and which clepeDds on its aoometrY.

It su8ices to point out at this juncture that in the linear context an equation analOIOus to
(4.9) is also valid in the limiting case when a polarized ceramic underaoes complete rapid
depolarization immediately behind the shock reprdless of the nature of the wave structure. In
this situation ~fJ is the equilibrium value, '311 is the instantaneous value and the strain S is
identified as the shock stNqtb aad it may depend on time if the shock evolves as it propap&es.
Further, for times greater than the wave front transit time, we have the homopneous equation

S dE3 h3
h1h2«33"dt"+ R E3=0.

so that the mapitude of the electric field decays exponentially from its value at transit time.

5. EXAMPLES WITlUlESISTIVE EXn:~NALCIRCUIT

It would be interesting to consider certain solutions of the coupled problem for the case of a
resistive external circuit and to illustrate, in particular, the iDftueaces of the boundary condition
at Xt =1t2 and the resistive load on the electrical response.

The material which we use in our sample problem is a ferroelectric ceramic called PZT SH.
and the appropriate properties relevant to our present considerations are [S]

~r.11 =12.6 x 1011 dyne/cm2,
e311 =- 6.5 x 1O~ coullcm2•

Ef3 =1.3 X 10-10 farad/cm.

p = 7.5 gm/cmJ :



Normal mode responses of linear piezoelectric materials with hexagonal symmetry 953

The geometrical dimensions of the specimen are taken to be

hI =0.318 em, h2 =2.22 em, h) =0.953 em,

and the resistances of the external circuit are

R =10,000 ohm,

R = 50,000 ohm.

The coupled problem, namely (3.6) and (3.12), together with the initial conditions

are solved numerically using a modification of the computer code WONDY IV for the following
three cases (6):

(0
T22(0, t) =6.3 X 10'dyne/cm2,

T:z{h2• t) =0;

(ii)

T:z{O t) ={4.67 x 10' t dyne/cm2
, 1< 1.35 p.sec,

, 6.3 x 10'dyne/cm2
, t> 1.35 p.sec,

Tn(h2, I) =0;

(iii)

Tn(0 I) ={4.67 x 10' t dyne/cm2
, 1< 1.35 p.sec,

, 6.3 x 10'dyne/cm2, t> 1.35 p.sec,

u:t<h2,1)=0.

In Fig. 3 we illustrative graphically thCi current, i.e. i = - h)E.JR, of cases (i) and (il) for 3
wave front transit times. Note that the gradual initial rise of the current is due not only to the
nature of the boundary condition at X2 =0 but also the RC time constant of the circuit Also,
the current begins to drop at approximately the first wave front transit time. This is a direct
result of the stress free boundary condition at X2 =h2• It is also of interest to point out that
because of electromechanical coupling and the stress free boundary condition a wave also

R • 10 kD
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Fig. 3. OUtput current versus time for R = 10.000 ohm. Solid line refers to case (i), aDd dasbed line refers to
case (ii) (see text).
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Fig. 4. Output current versus time for R = 10,ClO8ohm and R • 50.000 ohm for cue (i) (see text).
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oripnates at X2 =h2• Indeed, it foUows from (3.3h that

In Fig. 4 we illustrate the inftuence of the external resistive load on the current for case (i).
Clearly, these results show the inftuence of the RC time constant of the circuit on the nature of
the electrical response.

In Fig. S we illustrate the correspondina results of cases (ii) and (iii). Note that in case (iii)
the current continues to rise even after the fint wave front transit time, and is quite dilerent
from that of case (ii). This is because of the fact that the boundary at X2 - h2 is held fixed. At
approximately twice the wave front transit time the current betins to decrease.

The results which we have presented bere are indicative of the complicated nature of
electromechanical interactions, and the boundary conditions are of utmost iJnportarw;e in these
considerations. Unfortunately, there are no definitive experimental resuhs available for com
parison with our predictions at this time.
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